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A B S T R A C T   

Cities with high levels of bicycling tend to be some of the safest cities for all road users. This paper investigates 
why this relationship exists for fourteen small and mid-sized cities across the U.S. (seven with high bicycling rates 
and seven paired comparison cities) using ten years of data and hierarchical negative binomial regression 
models. Findings confirm that higher-bicycling cities are significantly associated with better overall road safety 
outcomes. In terms of mode choice differences, pedestrian ‘safety in numbers’ as well as reduced driving activity 
had a positive impact on pedestrian safety. Results from hierarchical negative binomial regressions also suggest 
that more compact cities were significantly associated with better road safety outcomes for all road users. In 
terms of socio-demographic and socio-economic factors, the results reveal equity concerns with areas with lower 
incomes and more non-White residents seeing more overall road fatalities.   

1. Introduction 

Boulder, CO, Corvallis, OR, and Davis, CA, are biking enclaves with 
2019 bike commute mode shares of 9.9%, 11.1%, and 17.5%, respec-
tively, versus a national average of 0.4% for all United States (U.S.) 
cities. Even though these three cities accommodate relatively high 
numbers of bicyclists, their streets are also relatively safe. This safety is 
not just for bicyclists but extends to all road users. Between 2015 and 
2019, overall traffic fatality rates per 100,000 residents in these three 
cities were 2.1, 2.8, and 1.4, respectively, versus a national average of 
11.3 for all U.S. cities over the same period. 

For an individual, bicycling is conventionally considered to be a 
relatively unsafe travel behavior. For instance, Beck et al. (2007) found 
that fatal and non-fatal injury rates (per person-trip) for bicyclists were 
nearly twice the overall road user average and significantly higher than 
rates for passenger vehicle, walking, or bus trips. Thus, one might as-
sume that more of an unsafe travel behavior might lead to worse overall 
road safety. 

Nevertheless, a developing body of knowledge suggests that the 
relationship between increased bicycling activity and improved traffic 
safety outcomes is not a coincidence. Cities with high bicycling rates 

tend to be safer for both bicyclists (Elvik and Bjørnskau, 2017; Jacobsen, 
2003; Nordback et al., 2014) as well as all road users (Marshall and 
Garrick, 2011a; Marshall and Ferenchak, 2019). Past research has found 
that the mechanisms behind improved traffic safety outcomes for the 
bicyclists may include more visibility and awareness of the bicyclists and 
more laws and regulations protective of people bicycling (Elvik, 2017; 
Fyhri et al., 2017; Jacobsen et al., 2015), while physical differences in 
the built environment such as more bicycle infrastructure may be related 
to improved traffic safety outcomes for all road users in large 
high-bicycling cities (Marshall and Ferenchak, 2019). In this study, we 
investigate small and mid-sized cities to see if these relationships hold 
and determine what factors are related to better road safety outcomes. 

To answer these questions, we investigated 14 small and mid-sized 
U.S. cities with populations between 50,000 and 200,000 residents. 
We first selected seven cities with high rates of bicycle commuting, 
which we designated as our high-bicycling cities. We then paired each of 
the high-bicycling cities with a paired comparison city that had low or 
average rates of bicycle commuting but similar characteristics in terms 
of overall population, regional location, and/or proximity to a major 
university or large city. We detail the specifics of the city selection 
process later in the paper. 
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In terms of trying to understand the factors associated with better 
safety, we examined factors across three categories: mode choice, built 
environment, and socio-demographic/socio-economic status. Mode 
choice, for instance, may impact traffic safety by shifting travelers away 
from unsafe modes, by decreasing overall exposure, or by enabling 
“safety in numbers” for vulnerable road users (which is further detailed 
in Section 2). The built environment may impact traffic safety by 
enabling safer street environments, likely through lower traffic speeds. 
With this effort, we collected bike facility data by facility type (e.g., 
protected bike lane, buffered bike lane, standard bike lane, shared lane 
marking, or off-road trail) and longitudinally noted the installation 
month of each bike facility in each study city. Socio-demographics and 
socio-economic status may impact traffic safety due to the increased risk 
of certain populations (such as older populations who are more sus-
ceptible to blunt force trauma or teenagers and young adults who are 
more likely to engage in risky behavior). We then explored which, if any, 
of these characteristics were most strongly related to traffic safety out-
comes by analyzing block groups that were also grouped on the city level 
through hierarchical negative binomial regressions. 

The next section assesses the existing literature. We then delve 
deeper into the city selection process and the l0 years of longitudinal 
data collected for each of the 14 cities. This is followed by a description 
of our statistical analysis and a step-by-step assessment of our results for 
each of the safety factors. Lastly, we discuss the implications of this 
work. 

2. Literature review 

2.1. Traffic safety in cities with high levels of non-driving travel modes 

A strain of research has developed suggesting that cities with high 
levels of public transit activity are safer than their peers. Stimpson et al. 
(2014) found that increased mass transit miles traveled per capita over 
29 years for 100 U.S. cities was associated with lower traffic fatality 
rates in those cities. A similar trend was found by Litman in a 2014 in-
ternational study (Litman, 2014). However, public transit is a relatively 
safe mode of travel, with fatality rates for car occupants being 15 times 
greater than for transit users (Savage, 2013). Therefore, it is fairly 
intuitive that more of a safe travel mode would make a city safer. 

On a per mile basis, biking is a relatively unsafe mode of travel. Yet, 
past research suggests that cities with higher levels of bicycling also 
have better traffic safety outcomes for both bicyclists themselves (Elvik, 
2017; Fyhri et al., 2017; Jacobsen, 2003; Jacobsen et al., 2015) and 
other road users as well (Marshall and Ferenchak, 2019; Marshall and 
Garrick, 2011a). The research as to why cities with higher levels of 
bicycling are safer for bicyclists suggests that societies with more bicy-
cling have more laws and regulations protective of people bicycling (as 
well as more adherence of those laws and regulations) and that road 
users are more aware of the presence of bicyclists (Elvik, 2017). Inter-
estingly, safety in numbers has been found to be stronger when there are 
fewer bicyclists (Jacobsen et al., 2015), possibly because of the influx of 
inexperienced and risk-taking bicyclists dampens the bicyclist safety in 
numbers effect (Fyhri et al., 2017). This current paper builds upon that 
past work to understand the mechanisms behind why cities with high 
levels of bicycling are not only safer for bicyclists, but for all road users. 

2.2. Potential factors associated with traffic safety 

We explore three factors that may be associated with traffic safety 
identified in past research: 1) mode choice (how people travel within 
their cities); 2) built environment (the physical makeup of the cities); 
and 3) socio-demographic/socio-economic characteristics of the resi-
dents of the cities (who is living in the cities). 

2.2.1. Mode choice 
The first category that we explored was directly related to the 

research question at hand: mode choice. Might the bicyclists themselves 
in the high-bicycling cities correlate with better safety outcomes? Or 
maybe these cities with higher rates of bicycling also have higher rates 
of transit usage or lower rates of driving that are playing an important 
role? 

2.2.1.1. Bicycle mode share. Bicyclist safety in numbers has been 
internationally established by past research and shows that as more 
people bike, the chance that an individual bicyclist will be struck by a 
car decreases (Elvik and Bjørnskau, 2017; Jacobsen, 2003; Nordback 
et al., 2014). It has been hypothesized that the reason that bicyclists in 
areas with high bicycling activity are at a decreased risk of being struck 
is because drivers are more aware of their presence or because built 
environments that lend themselves to more biking also lend themselves 
to safer driving. By exploring whether levels of biking activity are 
related to safety outcomes in our small and mid-size cities, we may be 
able to see whether ‘safety in numbers’ plays an important role. 

Interestingly, better safety outcomes in large high-bicycling U.S. 
cities were not strongly related to levels of bicycling, which suggests that 
safety in numbers and the bicyclists themselves were not the critical 
factor for better safety outcomes, although this result could have been 
because any variation in safety outcomes overwhelmed the safety in 
numbers phenomena (Marshall and Ferenchak, 2019). 

2.2.1.2. Pedestrian mode share. Safety in numbers has been established 
for pedestrians as well, with pedestrian crashes increasing more slowly 
than pedestrian activity levels (Elvik and Bjørnskau, 2017; Jacobsen, 
2003). However, we were not able to find research exploring the rela-
tionship between pedestrian activity and safety for all road user types on 
the city level. Thus, it is worth further exploring different modes of 
travel in relation to traffic safety outcomes. Improved safety outcomes 
may be related to bicyclist or pedestrian safety in numbers, increased 
exposure for safe modes, or decreased exposure for unsafe modes. 

2.2.2. Built environment 
In terms of the built environment, we explored land use (Section 

2.2.2.1) and physical transportation systems (Section 2.2.2.2), both of 
which past research has linked with traffic safety outcomes (Ferenchak, 
2020; Kim, Brunner, and Yamashita, 2006; Miranda-Moreno, Morency, 
and El-Geneidy, 2011; Pulugurtha et al., 2013; Ukkusuri et al., 2012). 

2.2.2.1. Land use. Urban sprawl has been linked with higher total and 
pedestrian crash rates (Ewing et al., 2003; Ewing et al., 2016). The au-
thors credited worse safety outcomes in sprawling areas to higher traffic 
speeds and greater vehicle miles driven. Similarly, it has been hypoth-
esized that the better traffic safety outcomes in denser areas may be a 
result of lower motor vehicle activity and speeds (Chen, 2015; Chen and 
Shen, 2016; Dumbaugh and Rae, 2009). As developments become 
denser, there is a higher likelihood that road users will opt to walk, bike, 
or take transit, thereby lowering motor vehicle exposure and lowering 
the risk of a motor vehicle collision. For motor vehicle trips that occur in 
dense developments, trip lengths are likely shorter and therefore do not 
require high vehicle speeds. The relationship between population den-
sity and traffic safety appears to be dependent upon the geographic scale 
of analysis, as population density was found to be negatively associated 
with collisions on the block group level but positively associated on the 
TAZ and zip code level when using vehicle miles travelled (VMT) as 
exposure (Xu et al., 2018). 

While we would have liked to further explore specific types of land 
use, obtaining updated land use data in GIS format for fourteen rela-
tively small cities across the U.S. was difficult and would have required 
significant assumptions to make the cities’ categorizations comparable. 
We instead used population density as a proxy for land use development. 
Population density has long been used as a general representation for 
unsustainable development such as suburban sprawl and has been used 
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in safety research (Brueckner and Fansler, 1983; Ewing, 1997; Ewing, 
Schieber, and Zegeer, 2003; Lindsay and Willis, 1974; Marshall and 
Ferenchak, 2017). Areas in England with lower population densities 
were associated with increased traffic fatalities (Noland and Quddus, 
2004). Similarly, areas in San Antonio and Philadelphia with higher 
population densities were found to experience fewer overall collisions, 
injuries, and fatalities (Dumbaugh and Rae, 2009; Guerra et al., 2019). 

2.2.2.2. Transportation systems. We wanted to analyze two aspects of 
our study cities’ transportation systems: large-scale network configura-
tions and small-scale street design elements. 

Similar to the land use discussion above, denser street networks have 
been linked with lower vehicle miles driven – and therefore lower 
overall exposure – as trips are shorter and people are more likely to 
switch to alternative modes of transportation. Denser street networks 
have also been linked with lower vehicles speeds because of more 
frequent intersections (Ewing et al., 2020). Operationalizing this 
concept, denser street networks with higher intersection counts per area 
have been found to correlate with fewer motor vehicle collisions across 
all severity levels while accounting for exposure (Marshall and Garrick, 
2010; Marshall and Garrick, 2011b). Higher intersection counts per road 
length correlated with lower pedestrian mortality rates (Mohan et al., 
2017) and fewer collisions for pedestrians and bicyclists (Zhang et al., 
2015). Past research has postulated that the negative relationship be-
tween street network density and traffic collisions is driven by 
higher-density areas’ lower vehicle speeds and travel decisions such as 
the use of non-vehicular modes (Marshall and Garrick, 2011b). 

On the street design level, past research correlated bike facilities – 

and especially protected and separated bike facilities – with improved 
traffic safety outcomes (DiGioia et al., 2017). It has been postulated that 
bike facilities may be correlated with improved traffic safety outcomes 
because of their traffic calming effects. On the other hand, not all bike 
facilities are created equal. For example, past research has found that 
block groups and intersections that have shared lane markings (or 
sharrows) are less safe for bicyclists (Ferenchak and Marshall, 2019a; 
Harris et al., 2013). Therefore, we sought to analyze each type of bike 
facility separately. 

We would have also liked to explore other street design character-
istics that have been found to relate to traffic safety outcomes such as 
number of lanes, posted speed limits, and lane widths (Ferenchak and 
Marshall, 2019b; Ferenchak and Marshall, 2019c; Manuel et al., 2014; 
Potts et al., 2007). However, obtaining street-level design information 
for all our study cities proved too cumbersome for the wide geographic 
range of the current analysis. 

2.2.3. Socio-demographics and socio-economic status 
A population’s socio-demographic or economic status may impact 

their traffic safety risk because of either the built environment in which 
they live (e.g., possible underinvestment in lower-income neighbor-
hoods) and/or their mobility options (e.g., less access to an automobile 
means a higher probability of being a vulnerable road user). For 
instance, with poverty in the U.S. over recent decades migrating from 
inner cities to suburbs, over half of the people living below the poverty 
line in the U.S. now reside in suburbs (Ferenchak and Abadi, 2021). 
These lower-income individuals often have limited transportation op-
tions but must navigate built environments designed exclusively for the 
automobile, presenting heightened risk to these lower-income pop-
ulations. Other research has identified that different socio-demographic 
and socio-economic populations have access to different amounts and 
types of bike infrastructure (Ferenchak and Marshall, 2021). Having 
access to less safe infrastructure could impact safety outcomes. In 
addition to differences in the built environment, populations of varying 
demographics and economic status have been shown to experience more 
or less aggressive behavior from drivers (Goddard et al., 2015). 

These built environment and behavioral factors have been found to 

translate into adverse traffic safety outcomes. Prior studies have 
generally shown that Black, Hispanic, lower-socio-economic, and lower- 
education populations are at higher risk of traffic fatalities and injuries, 
although those associations may be surrogates for other underlying 
factors such as inequitable street safety or policing (Braver, 2003; 
Campos-Outcalt et al., 2003; Harper et al., 2000; Marshall and Fer-
enchak, 2017; McAndrews et al., 2013; Schiff and Becker, 1996). At the 
same time, past studies have linked bicycling to gentrification, sug-
gesting that bicycling may lead to more White, higher-income, and 
higher-education populations (and possibly better traffic safety out-
comes) (Flanagan et al., 2016; Stehlin, 2015; Stein, 2011). While we do 
not want to explore or substantiate the possible link between gentrifi-
cation and bicycling activity and/or bicycling facilities with this paper, 
we do want to understand pertinent related equity factors such as 
race/ethnicity, income, and age that have been shown to be related to 
road safety. 

The current work contributes to the body of knowledge on road 
safety of high-driving cities by examining from a bicycling perspective, 
specifically examining small and mid-size cities, analyzing on multiple 
levels, and statistically accounting for all pertinent factors detailed 
above. 

3. City selection 

To understand whether small and mid-size cities with high rates of 
bicycling are safer than their peers, we sought to first identify what we 
termed “high-bicycling” cities and then identify paired comparison cit-
ies. For every city in the U.S. with between 50,000 and 200,000 resi-
dents, we obtained city-level 2019 American Community Survey (ACS) 
5-year estimates on bicycle commute mode share. While we would have 
liked to explore the prevalence of bike facilities during our city selection 
process, most of the cities did not have updated bike facility data readily 
available. We therefore used our bicycle commute mode share data to 
first identify small and mid-size cities that could be considered high- 
bicycling cities. With this, we sought high-bicycling cities that had 
both high levels of bike commute mode share (i.e., greater than triple the 
national average of 0.5%). The population and bicycle commute mode 
share criteria left us with 28 possible high-bicycling cities. Next, each 
high-bicycling city needed a logical paired comparison city that had 
significantly lower levels of bike commute mode share (less than half of 
its high-bicycling city) but with similar population (within 15% of each 
other), geographic location (same or adjoining census region), terrain, 
climate, and function (such as both cities housing a major university or 
being just outside a major city). Since many of the possible high- 
bicycling cities did not have logical comparison cities, our final city 
selection resulted in 7 high-bicycling cities and 7 paired comparison 
cities (Table 1). We then generated bike facility data for those cities and 
their paired comparisons (see more details in Section 4.2). 

We examined all block groups that were completely within the cities’ 

place boundaries as provided by the U.S. Census Bureau. The study 
covered ten years of data (2010–2019). This study period allowed us to 
use consistent geographies as 2010 block group boundaries were un-
changed throughout the study years. The study included 659 block 
groups: 305 block groups in the high-bicycling cities and 354 in the 
paired comparison cities. 

4. Data 

4.1. Traffic safety data 

For our traffic safety outcome variable, we chose to analyze fatalities 
because we wanted to explore the most serious traffic safety outcomes. 
Furthermore, we were not able to analyze motor vehicle collisions 
resulting in non-fatal injuries because of inconsistent data reporting 
across the study cities, availability issues, and changing injury severity 
definitions with the release of the 5th edition of the Model Minimum 
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Uniform Crash Criteria (MMUCC) in 2017. We originally sought to run 
statistical models on three separate analyses: total, pedestrian, and bi-
cycle fatalities. However, because sample sizes for bicycle fatalities were 
too low in our small and mid-size cities, we only analyzed total and 
pedestrian fatalities. 

Motor vehicle fatality data was available nationwide through FARS, 
which captures all motor vehicle collisions on public roads in the U.S. 
that resulted in a fatality within 30 days of the collision (Table 2). Fatal 
collisions between 2010 and 2019 were counted for each block group 
using spatial joins in GIS. Because roadways are often chosen as block 
group boundaries, collisions frequently lie along the edge of two 
adjoining block groups. In which block group should we count such a 
collision? Not counting the collision would provide us with an incom-
plete picture of safety, while counting the collision in only one block 
group would bias our analysis (Tresidder, 2005). Therefore, we applied 
30-foot buffers to all block groups and counted boundary collisions in all 

adjoining block groups. Because of this method, the fatality data cannot 
be aggregated from the block group level. 

4.2. Built environment data 

As described in Section 2.2.2.1, past traffic safety research has 
frequently used population density as a land use proxy. Higher popu-
lation density has been linked with improved safety outcomes because of 
shorter trips resulting in lower levels of exposure and lower vehicle 
speeds. To calculate population density, we divided each block group’s 
2019 ACS 5-year estimate of population by each block group’s area of 
land. 

As described in Section 2.2.2.2., denser street networks have been 
linked with lower vehicle miles driven and lower vehicles speeds (Ewing 
et al., 2020). We obtained data representing street network density from 
the U.S. Environmental Protection Agency’s Smart Location Database in 
the form of intersection density on the block group level. 

Bike facility data proved more difficult to compile. Although some of 
our cities provided bike facility GIS layers, many cities did not have 
them available. Even when GIS layers were available, many were 
outdated or did not include shared lane markings. A single coder 
therefore updated all bike networks for all cities in 2019. This required a 
combination of emails/phone calls with city planners, an in-depth re-
view of bike maps, as well as reviewing facilities documented in Google 
Maps and Google Street View. We originally differentiated between 
protected, buffered, and standard bike lanes, off road trails, and shared 
lanes markings as defined by the American Association of State Highway 
and Transportation Officials’ (AASHTO) Guide for the Development of 
Bicycle Facilities (AASHTO, 2012), but because of limited prevalence of 
protected and buffered bike lanes in the small and mid-size cities, we 
grouped facilities into three categories: 1) bike lanes (including pro-
tected, buffered, and standard), 2) off-road trails, and 3) shared lane 
markings. Shared lane markings are pavement markings consisting of a 
bicycle with two chevrons above it, with the chevrons designating the 
desired direction of travel for the bicyclist (AASHTO, 2012). Shared lane 
markings are specified to be 112 in. in length by 40 in. in width and are 
often used when road designers wish to provide more guidance than 
signage can provide but where it has been deemed that not enough space 
is available for a designated bike lane (AASHTO, 2012). 

Table 1 
City Selection and City-Level Descriptive Statistics. Cities paired in order (e.g., Boulder to Norman; Cambridge to Alexandria; etc.).  

High-Bicycling Cities          
Population 
(2019) 

Population 
Density1 

Total 
Fatal 
Rate2 

Bicycle 
Fatal 
Rate3 

Bike Commute 
Share (2019) 

SOV Commute 
Share (2019) 

Density 
Bike 
Lanes4 

Density 
Trails4 

Density 
Sharrows4 

Intersection 
Density5 

Boulder, CO 106,392 3.9 1.8 0.2 9.9% 50.8% 34.7% 20.5% 0.0% 94.5 
Cambridge, 

MA 
116,632 16.4 1.8 0.8 7.7% 26.8% 25.8% 5.1% 2.5% 208.4 

Pasadena, CA 141,258 6.1 5.1 3.0 1.8% 69.9% 8.7% 0.0% 4.9% 111.0 
Iowa City, IA 74,950 2.9 2.4 0.0 3.6% 58.9% 1.4% 9.3% 6.5% 92.8 
New Haven, 

CT 
130,331 6.8 8.1 1.1 3.1% 58.7% 10.5% 1.8% 20.7% 79.6 

Portland, ME 66,595 3.1 3.8 0.0 2.2% 65.6% 8.8% 1.6% 5.5% 136.4 
Passaic, NJ 70,019 21.6 2.0 0.0 0.6% 48.1% 1.2% 0.0% 1.5% 126.8 
Paired Comparison Cities         
Norman, OK 122,837 0.6 5.7 2.0 1.6% 80.3% 5.4% 3.3% 0.0% 78.3 
Alexandria, 

VA 
157,613 10.4 2.2 0.0 1.3% 59.3% 7.9% 4.2% 10.9% 118.4 

Fullerton, CA 139,611 6.2 4.9 6.2 0.7% 79.5% 16.2% 1.3% 0.0% 101.7 
Eau Claire, WI 68,187 2.0 2.9 2.1 1.3% 80.8% 0.9% 13.8% 0.0% 101.6 
Columbia, SC 133,273 1.0 12.2 11.9 0.5% 64.1% 1.4% 0.1% 0.2% 115.2 
Youngstown, 

OH 
64,783 1.9 11.0 47.6 0.1% 74.7% 0.9% 0.0% 0.0% 84.7 

East Orange, 
NJ 

64,374 16.4 2.5 0.0 0.2% 56.9% 0.0% 0.4% 0.0% 97.3 

Note: 1) 1000 residents per square mile of land; 2) 2010-2019 fatalities per 10,000 population; 3) 2010-2019 bicyclist fatalities per 1000 bicycle commuters; 4) % road 
lane miles; 5) intersections per square mile. 

Table 2 
Variables and Block Group Descriptive Statistics.   

Variable Mean SD Min Max 
Safety Variables  

Total Fatal Collisions (2010-2019) 0.7 1.1 0 7  
Pedestrian Fatal Collisions (2010-2019) 0.2 0.6 0 5  
Bicycle Fatal Collisions (2010-2019) 0.0 0.2 0 1 

Population Variables  
Population (residents) 1258.1 646.4 48 4744 

Mode Choice Variables  
Bicycle Mode Share to Work (%) 2.8 4.6 0 35.5  
Transit Mode Share to Work (%) 10.3 12.1 0 75.0  
SOV Mode Share to Work (%) 62.2 21.3 1.1 100 

Built Environment Variables  
Density of Bike Lanes (% road lane miles) 9.9 15.9 0 105.0  
Density of Trails (% road lane miles) 3.7 12.2 0 123.2  
Density of Sharrows (% road lane miles) 4.4 11.9 0 88.4  
Intersection Density (intersections per sq. 
mi.) 

109.9 68.1 4.1 860.4  

Population Density (1000 pop. Per sq. mi. 
of land) 

12.8 11.9 0.1 72.1 

Socio-Demographic and Socio-Economic Variables  
Population Identifying as White (%) 60.6 27.2 0 100  
Median Household Income (in 1000 s) 64.2 43.1 0 248.2  
Median Age (years) 35.4 9.0 16.7 76.4  
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We calculated the cumulative length of each facility type in each 
block group using spatial joins in GIS. A 30-foot buffer allowed facilities 
that formed the boundary of two block groups to be counted for both, 
thereby avoiding edge issues. Bike facilities that were present on both 
sides of a road were counted twice, while bike facilities on one side were 
counted once. We normalized these bike facility measurements by 
dividing the length of bike facilities in each block group by the total 
length of roadway for that respective block group. Our bike facility 
metric was therefore the proportion of centerline miles that had a bike 
facility installed. Roadway data was provided by the United States 
Geological Survey (USGS) National Transportation Dataset (NTD) in GIS 
polyline format. The California dataset provided by USGS was last 
updated in April 2019 and the dataset containing all the other cities was 
last updated in May 2020. 

4.3. Socio-demographic/socio-economic data 

Prior studies have generally shown that Black, Hispanic, lower-socio- 
economic, and lower-education populations are at higher risk of traffic 
fatalities and injuries because of differences in built environment and/or 
travel behavior (Braver, 2003; Campos-Outcalt et al., 2003; Harper 
et al., 2000; Marshall and Ferenchak, 2017; McAndrews et al., 2013; 
Schiff and Becker, 1996). A population’s age may relate to traffic safety 
outcomes because of higher levels of risk in younger populations or older 
populations being more vulnerable to injury. Accordingly, the 2019 ACS 
5-year estimates also provided block group-level data on percent of 
population identifying as non-Hispanic White, median household in-
come, and median age. 

5. Methods 

We first sought to understand whether small and mid-size high- 
bicycling cities are in fact safer for all road users, pedestrians, and bi-
cyclists. Then, we identified important determinants of those differences 
in safety outcomes. 

5.1. Are high-bicycling cities safer? 

Since the study cities and block groups varied in size, we sought to 
account for the level of exposure in our geographies. Exposure is a 
measure of risk experienced in the roadway environment, typically 
quantified in either the number of persons, distance travelled, or time 
spent in the transportation system. Population-based exposure metrics 
allow road safety to be studied as a public health issue and are common 
in studies that consider socio-demographic and socio-economic factors 
(Sewell et al., 1989; Gallaher et al., 1992; Schiff and Becker, 1996; 
Campos-Outcalt et al., 2003; Marshall and Ferenchak, 2017; Marshall 
and Garrick, 2010). Outcomes based on population-based exposure 
reflect overall societal risk while those based on travel exposure (e.g., 
distance or time) reflect travel risk (Ferenchak and Marshall, 2020a; 
McAndrews et al., 2013). 

We accounted for exposure for overall traffic fatalities (all modes) 
with population data on the block group level. For each block group, we 
divided the total number of roadway fatalities by the total number of 
residents. This allowed us to explore how safe the residents of each block 
group were, as opposed to how safe it was for them to drive. In other 
words, the results of this paper reflect the safety of living in a city versus 
the safety of driving in that city. 

Since not all residents regularly walk or bike on public roads, 
population-based exposure metrics are less accurate for measuring 
active transportation safety. We therefore accounted for active trans-
portation exposure using commute mode share data from the Census (for 
instance, the number of bike fatalities per bike commuter), which is a 
more accurate reflection of the prevalence of those activities and 
therefore a more accurate reflection of the safety of those activities. 
However, not all pedestrians and bicyclists are commuting, so this 

metric should be considered as an exposure proxy. 
We then analyzed fatality rates for all road users (using population as 

exposure), pedestrians, and bicyclists (using walking and biking com-
muters as exposure) using 95% confidence intervals that compared the 
means of our high-bicycling block group sample to the means of our 
paired comparison block group sample. This allowed us to identify 
whether high-bicycling cities were safer for all road users relative to 
their paired comparisons. 

5.2. Statistical analysis 

We next wanted to understand which possible determinants were 
significantly related to any identified safety differences. What made 
those living, working, and playing in a block group or city safer? 

To answer this research question, we employed negative binomial 
regressions. Negative binomial regressions are often used in traffic 
safety research as injury counts are frequently over-dispersed, as our 
data was. Given the structure of our study, we used hierarchical negative 
binomial regressions to account for spatial autocorrelation in our ana-
lyses. While we gathered data on the block group level, it may be that 
block groups within one city share characteristics of that city, which 
would spatially violate the assumption of independence that underlies 
most statistical models. We therefore ran a multi-level model so that we 
could distinguish between block group and city level factors and 
outcomes. 

The dependent variable in our statistical models was fatalities. We 
included results for all traffic fatalities and pedestrian fatalities in this 
paper. We did not create statistical models for bicyclist fatalities because 
of low sample sizes. To account for exposure, we controlled for popu-
lation in the total fatalities model and the number of pedestrian com-
muters in the pedestrian fatality model. 

Independent variables were selected from our three possible factors 
as detailed above. We standardized each independent variable by con-
verting every value to a Z-score. This is done by subtracting the mean 
from each observed value and dividing by the standard deviation for 
that variable. The Z-score is therefore a measure of standard deviations 
above or below the mean, which allows for the strength of disparate 
variables to be compared. 

When selecting our independent variables, we ran into multi-
collinearity issues where variables were correlated with each other, 
which would again violate the independence assumption. For instance, 
there was a strong negative correlation between transit commute mode 
share and single-occupancy vehicle commute mode share. We therefore 
first built hierarchical negative binomial regressions for each possible 
factor separately and identified any non-significant variables or, if two 
variables were highly correlated, the weakest variables. We dropped 
these variables from the full models that simultaneously accounted for 
variables related to all three factors. 

6. Results 

6.1. Are high-bicycling cities safer than paired comparison cities? 

There were 719 total fatal collisions, 192 fatal pedestrian collisions, 
and 22 fatal bicycle collisions in the study cities between 2010 and 2019. 
Paired comparison cities had 61.4% more total traffic fatalities and 40% 
more pedestrian fatalities (both statistically significant at 95% confi-
dence). The high-bicycling and paired comparison cities had the same 
number of bicyclist fatalities. 

If paired comparison cities had more residents or pedestrians, we 
might expect the results above. Controlling for the exposure to risk helps 
us better understand the relative safety of the study cities. After ac-
counting for exposure, fatality rates were higher in paired comparison 
cities for all modes studied. Total traffic fatality rates (per 10,000 pop-
ulation) were 57.3% higher in paired comparison cities (Fig. 1). How-
ever, the paired comparison cities also had relatively high variability, 
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leading to a lack of statistical significance. 
The bicycle fatality rates should be interpreted with caution due to 

low sample sizes (Fig. 1). There were only 22 bicycle fatalities in the 
fourteen study cities over the ten years of the study. A lack of bicycle 
fatalities does not necessarily signal safe conditions, as it may be a sign 
that conditions are so inhospitable to bicyclists, there is no bike activity 
and therefore no bicyclists to be struck (Ferenchak and Marshall, 2020b; 
Nevelsteen et al., 2012; Schneider et al., 2004). It is difficult to assess 
bicyclist safety in the 75.0% of study block groups that had no bicycle 
fatalities and fewer than 50 bicycle commuters. More research is needed 
to better understand bicyclist-specific safety. 

Pedestrian commuters and fatalities were prevalent enough to obtain 
statistically significant results (Fig. 1). Pedestrian fatalities in paired 
comparison cities were 193.8% higher than in high-bicycling cities, and 
the difference was statistically significant at 95% confidence. If lower 
traffic speeds and fewer vehicle trips play a role in improved safety for 
small and mid-size high-bicycling cities as is the case in large cities, we 
would expect those traffic safety benefits to be especially reflected in 
vulnerable road user outcomes (Marshall and Ferenchak, 2019). 

6.2. Category-by-category model results 

Which variables are related to lower fatality rates? The results below 
are from our hierarchical negative binomial regressions. To avoid mul-
ticollinearity, we first developed category-specific statistical models that 
individually explore our three possible factors: mode share, built envi-
ronment, and socio-demographic/socio-economic status. For each 
category, we developed two separate models: one model for all traffic 
fatalities and one model for pedestrian fatalities. This allowed us to 
remove non-significant variables and variables that introduced 

multicollinearity when we developed our full statistical models in Sec-
tion 6.3. Every total fatality model controlled for population and every 
pedestrian fatality model controlled for the number of pedestrian com-
muters. To allow for the comparison of coefficients, we standardized all 
variables using Z-scores by subtracting each observed value by the mean 
of that variable and dividing by the standard deviation. Each variable’s 
coefficient therefore represents standard deviations above or below the 
mean, which can be compared to other variables’ coefficients. 

6.2.1. Mode choice category results 
For all traffic fatalities, mode choice variables were only significant 

on the block group level (Table 3). The negative coefficients can be 
interpreted as showing that block groups with higher levels of bike, 
pedestrian, and transit commuting had fewer traffic fatalities after 
controlling for exposure with population. These results suggest that for 
all road users, there may be a ‘safety in numbers’ effect in that more 
bicyclists and pedestrians on the streets improves overall safety (Elvik 
and Bjørnskau, 2017; Jacobsen, 2003; Nordback et al., 2014). 

There is evidence of pedestrian ‘safety in numbers’ when examining 
pedestrian fatalities. The negative coefficients on both the city and block 
group levels indicate that areas with many pedestrians experience 
significantly fewer pedestrian fatalities. Additionally, cities with higher 
levels of single-occupancy vehicle commute mode share were found to 
have more pedestrian fatalities (Table 3). This resonates with previous 
research that found that less driving – as opposed to high shares of other 
travel modes – was the best predictor of improved safety outcomes 
(Stimpson et al., 2014). 

6.2.2. Built environment category results 
For both pedestrian fatalities and all road user fatalities, population 

density was the strongest built environment variable on both the city 
and block group levels (Table 4). The negative coefficient is interpreted 
as higher population densities correlating with fewer fatalities. These 
results are expected because – as detailed in the literature review – 

denser built environments have been linked with shorter trips (and 
therefore less exposure), slower vehicle speeds, and less driving (Ewing 
et al., 2020; Marshall and Garrick, 2010). Because intersection density, 
which is typically positively related to population density, also had a 
statistically significant negative relationships with fatalities, we decided 
to keep both population density and intersection density in our final 
statistical models. 

The relationship between traffic fatalities and bike facilities was 
relatively weak (Table 4). Sharrows were significant for all traffic fa-
talities on the city level while trails were significant for all fatalities and 
pedestrian fatalities on the block group level. Both relationships were 
negative meaning that higher levels of sharrows and trails were corre-
lated with fewer fatalities. Bike lanes were not significant for any cate-
gory. We therefore left the trails and sharrows variables in our final 
models but removed the bike lane variable. However, the bike facility 
results should be interpreted with caution as sample sizes were low. For 

Fig. 1. Means and 95% Confidence Intervals of Fatality Rates by Block Groups 
(total = annual traffic fatalities per 10k population; bicycle = annual bicycle 
fatalities per 1k bicycle commuters; pedestrian = annual pedestrian fatalities 
per 1k pedestrian commuters). 

Table 3 
Category 1 Mode Choice Negative Binomial Models (95% confidence in bold).  

Variable All Fatalities Model Pedestrian Fatalities Model  
Coefficient p-value S.E. Coefficient p-value S.E. 

Constant  -8.509  < 0.001  0.265  -9.698  < 0.001  0.396 
City Level Variables             
Bike Mode Share  -0.108  0.265  0.097  -0.217  0.206  0.172 
Pedestrian Mode Share  -0.189  0.106  0.117  -1.472  < 0.001  0.269 
SOV Mode Share  -0.065  0.680  0.157  0.515  0.046  0.300 
Transit Mode Share  -0.018  0.889  0.132  0.242  0.290  0.229 
Block Group Level Variables             
Bike Mode Share  -0.304  0.002  0.101  -0.419  0.013  0.168 
Pedestrian Mode Share  -0.257  0.042  0.126  -1.670  < 0.001  0.282 
SOV Mode Share  -0.139  0.400  0.165  0.258  0.394  0.303 
Transit Mode Share  -0.279  0.021  0.120  -0.040  0.845  0.206  
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example, 53.5% of study block groups had no bike lanes, 78.3% of study 
block groups had no trails, and 79.1% of study block groups had no 
sharrows. The weak results that we obtained may not be so much a 
reflection of a lack of relationship between bike facilities and traffic 
safety, but more a reflection of the lack of facilities. 

6.2.3. Socio-demographic/socio-economic category results 
For all road user fatalities, income was the strongest socio-economic 

status (SES) variable on both the city and block group levels. The 
negative coefficients mean that areas with lower incomes had more fa-
talities, which could be related to underinvestment or imprudent in-
vestments in those neighborhoods or behavioral differences such as 
unsafe driving behaviors or higher prevalence of vulnerable road users 
(Table 5). Areas with older residents and more non-White residents 
experienced more fatalities, although those relationships were not as 
strong as income. These relationships reveal equity issues and may be 
because older residents to be more vulnerable to injury when involved in 
a crash and non-White populations are likely exposed to the same factors 
listed above for lower-income neighborhoods (i.e., underinvestment or 
imprudent investments or behavioral differences such as unsafe driving 
behaviors or higher prevalence of vulnerable road users in their 
neighborhoods). 

For pedestrian fatalities, all the relationships detailed above were in 
the same direction, but age and race/ethnicity became much stronger 
variables. This suggests that the equity issues identified above for all 
road users are more acute for pedestrians. 

6.3. Full model results 

Which variables remain significant after controlling for all other 
variables? As with the individual category models, we standardized each 
independent variable with Z-scores in our final holistic negative bino-
mial regressions. We controlled for population in our total fatality model 
and controlled for pedestrian commuters in our pedestrian fatality 
model. Because the bike lane variable was not significant in the category 

models, we removed that variable from our final models. To confirm this 
decision, we tested the bike lane variable in our final models, and it 
remained non-significant. 

6.3.1. Mode choice full results 
Bike mode share did not reach statistical significance for either type 

of fatality or for either level that was studied, a result similar to what was 
found in large U.S. cities (Marshall and Ferenchak, 2019). (Table 6). We 
interpret these results with caution given the small sample sizes of 
bicyclist commuters in these small and mid-size cities and suggest that 
future work might explore bicyclist ‘safety in numbers’ in cities with 
high enough bicyclist activity to appropriately detect the possible phe-
nomenon. It would also be interesting to examine bike fatalities in future 
work to understand if bicyclist ‘safety in numbers’ exists for bicyclist 
safety, but the number of bike fatalities was too low for the small and 
mid-size cities studied in this paper to garner any meaningful results. 

While bicyclist ‘safety in numbers’ was not apparent in our analysis, 
pedestrian ‘safety in numbers’ seems to be strongly present. Cities and 
block groups with more pedestrian commuting had significantly lower 
pedestrian fatality rates. While pedestrian ‘safety in numbers’ appears to 
be impacting pedestrian safety, there is no significant evidence that it is 
extending to overall road user safety. 

SOV mode share continued to be significantly and positively related 
to pedestrian fatalities, with cities with higher levels of SOV mode share 
having more pedestrian fatalities (Table 6). Promoting mode shift to 
non-driving modes may therefore be an effective means of improving the 
safety of vulnerable road users. 

6.3.2. Built environment full results 
The density of the built environment was one of the strongest vari-

ables in the full models, with denser built environments being associated 
with better safety outcomes (Table 6). Population density was the 
strongest variable for total fatalities and was the third strongest variable 
for pedestrian fatalities. Intersection density also reached significance 
for total fatalities but was slightly weaker than population density. 

Table 4 
Category 2 Built Environment Negative Binomial Models (95% confidence in bold).  

Variable All Fatalities Model Pedestrian Fatalities Model  
Coefficient p-value S.E. Coefficient p-value S.E. 

Constant  -8.191 < 0.001  0.271  -8.456 < 0.001  0.435 
City Level Variables           
Population Density  -0.470 < 0.001  0.110  -0.484 0.014  0.198 
Intersection Density  -0.209 0.042  0.101  -0.137 0.431  0.174 
Density of Bike Lanes  0.114 0.182  0.086  0.126 0.472  0.176 
Density of Trails  0.082 0.284  0.077  -0.027 0.874  0.172 
Density of Sharrows  -0.175 0.045  0.087  -0.120 0.459  0.162 
Block Group Level Variables           
Population Density  -0.572 < 0.001  0.093  -0.919 < 0.001  0.176 
Intersection Density  -0.346 < 0.001  0.098  -0.570 0.001  0.175 
Density of Bike Lanes  0.025 0.735  0.074  -0.096 0.516  0.148 
Density of Trails  -0.178 0.030  0.082  -0.569 0.001  0.178 
Density of Sharrows  -0.051 0.502  0.076  -0.013 0.924  0.142  

Table 5 
Category 3 Socio-Demographic/Socio-Economic Negative Binomial Models (95% confidence in bold).  

Variable All Fatalities Model Pedestrian Fatalities Model  
Coefficient p-value S.E. Coefficient p-value S.E. 

Constant  -8.218 < 0.001  0.261  -8.222 < 0.001  0.439 
City Level Variables           
Age  0.238 < 0.001  0.071  0.527 < 0.001  0.151 
Income  -0.240 0.019  0.102  -0.382 0.060  0.203 
White  -0.128 0.192  0.098  -0.391 0.059  0.207 
Block Group Level Variables           
Age  0.343 < 0.001  0.074  0.831 < 0.001  0.147 
Income  -0.432 < 0.001  0.090  -0.464 0.007  0.173 
White  -0.295 < 0.001  0.073  -0.866 < 0.001  0.146  
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While no bike facility variables were significantly related to safety 
outcomes, the bike facilities results should be interpreted with caution 
because of the lack of bike facilities in the study cities. 

6.3.3. Socio-demographic/socio-economic full results 
There appears to be an equity component to the results, with income 

being an especially strong determinant of safety outcomes (Table 6). 
Income was the second strongest determinant of both overall fatalities 
and pedestrian fatalities. The negative relationship signifies that areas 
with higher incomes had fewer fatalities. 

Race/ ethnicity was also significant on the block group level, with 
non-White block groups being associated with more overall and pedes-
trian fatalities. Age was not significant in any of the models. 

More research is needed to understand the underlying mechanisms 
behind these equity issues. Why are low-income and non-White neigh-
borhoods more susceptible to traffic fatalities? It is particularly worri-
some that the equity issues appear to be strongest for vulnerable road 
users. 

7. Discussion 

Findings suggest that high-bicycling small and mid-size cities are 
safer than their peers in terms of total and pedestrian fatality rates. 
While we would assume that they would also be safer for bicyclists, 
sample sizes were too small and exposure data was lacking, precluding a 
definitive conclusion on bicyclist safety. 

Why are small and mid-size high-bicycling cities safer than their 
peers? It is important to note that the results of this work are exploratory 
and not confirmatory evidence of causality. First considering mode 
choice, the results suggest that to improve the safety of their streets, and 
especially for vulnerable road users, small and mid-size cities might 
focus on promoting alternatives to driving. There was strong evidence of 
pedestrian ‘safety in numbers’ identified, with cities and block groups 

with higher levels of pedestrian commuting experiencing lower pedes-
trian fatality rates. While bicyclists ‘safety in numbers’ was not detected 
in this current paper, past research has established the phenomenon and 
future research specific to bicyclist safety in areas with larger sample 
sizes and more robust bicycling activity data would be better suited to 
further identify and define such relationships (Elvik, 2017; Elvik and 
Bjørnskau, 2017; Jacobsen, 2003; Jacobsen et al., 2015). 

There was also evidence that lower levels of driving were associated 
with improved pedestrian safety. This finding resonates with past 
research that similarly found that it was not so much the proliferation of 
any one non-driving mode that improved traffic safety, but instead the 
lower levels of driving that correlated most strongly with decreased 
traffic fatality rates (Stimpson et al., 2014). While we did not directly 
explore non-physical changes such as travel demand management in 
breaking auto-dependence with this work, future work might explore 
and this relationship with safety outcomes. 

Secondly considering the built environment, one of the principal 
findings of this work is the importance of a high-density built environ-
ment in terms of both land use and street networks when pursuing traffic 
safety improvements. Such high-density built environments are likely 
associated with shorter trips, lower vehicle speeds, and less vehicle miles 
travelled, thereby resulting in the traffic safety improvements identified 
in this paper, although future work will be needed to verify these un-
derlying mechanisms. 

Thirdly considering socio-demographic and socio-economic factors, 
the results suggest that lower-income and non-White neighborhoods are 
especially susceptible to traffic fatalities. These findings represent sig-
nificant equity issues, with vulnerable road users being especially sus-
ceptible. As cities pursue densification and mode shift, they should 
ensure that all populations have access to the safety improvements 
incurred. 

Future work that continues to explore the complex nature and inter- 
connectedness of the relationships identified above would provide 

Table 6 
Full Negative Binomial Models (95% confidence in bold).  

Variable All Fatalities Model Pedestrian Fatalities Model  
Coefficient p-value S.E. Coefficient p-value S.E. 

Constant  -7.810 < 0.001  0.287  -8.773 < 0.001  0.414 
Category 1 Mode Choice           
City Level Variables           
Bike Mode Share  -0.063 0.506  0.095  -0.048 0.770  0.165 
Pedestrian Mode Share  -0.152 0.190  0.116  -1.464 < 0.001  0.262 
SOV Mode Share  -0.086 0.571  0.152  0.574 0.043  0.284 
Transit Mode Share  -0.047 0.706  0.126  0.148 0.478  0.209 
Block Group Level           
Bike Mode Share  -0.061 0.517  0.094  -0.101 0.516  0.156 
Pedestrian Mode Share  -0.114 0.336  0.119  -1.532 < 0.001  0.263 
SOV Mode Share  -0.091 0.555  0.154  0.349 0.205  0.276 
Transit Mode Share  -0.164 0.160  0.117  0.037 0.847  0.192 
Category 2 Built Environment           
City Level Variables           
Population Density  -0.611 < 0.001  0.120  -0.643 < 0.001  0.186 
Intersection Density  -0.214 0.029  0.098  -0.067 0.664  0.154 
Density of Trails  0.077 0.293  0.073  0.102 0.352  0.110 
Density of Sharrows  -0.165 0.053  0.085  0.049 0.709  0.130 
Block Group Level Variables           
Population Density  -0.586 < 0.001  0.100  -0.554 < 0.001  0.156 
Intersection Density  -0.208 0.025  0.093  -0.027 0.852  0.147 
Density of Trails  -0.030 0.686  0.075  0.095 0.375  0.107 
Density of Sharrows  -0.023 0.761  0.076  0.068 0.558  0.117 
Category 3 Demographic & SES           
City Level Variables           
Age  0.104 0.155  0.073  0.159 0.226  0.131 
Income  -0.428 < 0.001  0.107  -0.772 < 0.001  0.197 
White  -0.131 0.185  0.099  -0.286 0.101  0.175 
Block Group Level Variables           
Age  0.117 0.123  0.076  0.207 0.112  0.130 
Income  -0.357 < 0.001  0.089  -0.619 < 0.001  0.164 
White  -0.397 < 0.001  0.082  -0.490 < 0.001  0.137  
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further contributions to the body of knowledge on the connection be-
tween bicycling and traffic safety. For instance, a positive feedback loop 
may be formed when cities with fewer cars are more appealing for bi-
cyclists and pedestrians, with corresponding increases in cycling and 
walking leading to still fewer cars. With these reductions in cars, all road 
users may become safer. Similarly, because denser cities may enable 
people to walk and cycle more due to increased access, does the density 
of the city (and lower vehicle speeds necessitated by smaller block sizes 
and smaller and busier streets) correlate with improved safety or is that 
density a proxy for the underlying mode shift away from cars? In the 
overall statistical model of this paper, the built environment factors 
were the strongest, suggesting that the urban form itself may be more 
important than who is on the streets, although future work could 
continue to elucidate this relationship. These ideas may call into ques-
tion the fundamentals of bicycling safety in numbers. Are cyclists safer 
in places with more cyclists or are there more cyclists present in places 
that are safe for cyclists? 

How can we leverage these findings to improve traffic safety? The 
results of this work align with past research that has shown that the most 
fundamental approach to reducing motor vehicle crashes is by reducing 
motor vehicle exposure, namely by providing alternative mobility op-
tions. This multimodal perspective has been shown to be effective for 
Vision Zero cities (Ferenchak, 2022) and has been placed at the top of 
the Safe Systems Pyramid, ranking above other approaches such as en-
gineering controls and administrative controls (Ederer et al., 2023). The 
results of the current paper further suggest that the approaches to this 
multimodality may be multifaceted. Planners may play an important 
role through the promotion of safe and livable densification through 
policies such as infill, urban growth boundaries, and transit-oriented 
development. Engineers can further enhance that multimodality 
through road and multimodal network connectivity and densification 
and by providing safe and comfortable facilities for non-motorized 
modes of transportation (although the bicycle infrastructure variable 
was not significant in the current work, likely because of small sample 
sizes). While not tested in this research, it would also be reasonable to 
expect other policies aimed at promoting multimodality such as trans-
portation demand management (TDM) might also be a practical 
approach to improved traffic safety through multimodality as past 
research has suggested as much (Litman and Fitzroy, 2018; Pirdavani 
et al., 2013). 

8. Conclusions 

If cities wish to improve their traffic safety outcomes, they should 
first and foremost plan and design for the convenience and safety of 
those not using a personal automobile as findings from this paper have 
identified 1) that small and mid-size cities with higher bicycling activity 
are significantly associated with better overall road safety outcomes and 
2) evidence of pedestrian ‘safety in numbers’. A key approach to this 
focus on non-automobile modes appears to be higher density land use 
development and transportation networks, which are likely linked to 
fewer vehicle trips and lower vehicle speeds. Because results revealed 
that areas with lower incomes and more non-White residents experience 
more overall road fatalities, equity issues must also be addressed to 
ensure all residents have access to safety benefits. 
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